Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics.
نویسندگان
چکیده
Metal conductive ink for flexible electroncs has exhibited a promising future recently. Here, an innovative strategy was reported to synthesize silver nanocolloid (2.5±0.5 nm) and separate solid silver nanoparticles (<10 nm) effectively. Specifically, silver nitrate (AgNO3) was used as a silver precursor, sodium borohydride (NaBH4) as a reducing agent, fatty acid (CnH2n+1COOH) as a dispersant agent, and ammonia (NH3·H2O) and hydrochloride (HCl) as a pH regulator and complexing agent in aqueous solution. The main mechanism is the solubility changes of fatty acid salts (CnH2n+1COO-NH4+) and fatty acid (CnH2n+1COOH) coated on the synthesized silver nanoparticles (NPs) in aqueous solution. This change determines the suspension and precipitation of silver NPs directly. The results show that when n in dispersant is 12 and molar ratio (C12H24O2/AgNO3) is 1.0, the separation yield of silver NPs is up to 94.8%. After sintering at 125 °C for 20 min, the as-prepared conductive silver nanoink (20 wt %) presents a satisfactory resistivity (as low as 6.6 μΩ·cm on the polyester-PET substrate), about 4 times the bulk silver. In addition, the efficacy of the as-prepared conductive ink was verified with the construction of a radio frequency antenna by inkjet printing and conductive character pattern (Fudan-Fudan) by direct wiring, showing excellent electrical performance.
منابع مشابه
Facile Approach to Synthesize and Characterization of Silver Nanoparticles by Using Mulberry Leaves Extract in Aqueous Medium and its Application in Antimicrobial Activity
There is a huge demand of silver nanoparticles in the global market due to their special properties and applications in different fields such as nanomedicine , dentists , nanocatalysis, nanoelectronics, textile field, waste water treatment.The major cons of top down and Bottom up methods are the synthesis processes are highly costly, time consuming and many harmful chemicals are used. To reduce...
متن کاملFacile preparation of silver nanoparticles and antibacterial Chitosan-Ag polymeric nanocomposites
Silver nanostructures as an effective antibacterial materials were synthesized via three various hydrothermal, sono-chemical and microwave methods using water as a green solvent. Then Chitosan-Ag polymer based nanocomposites were made by a fast chemical procedure. The influence of power, temperature and time on the morphology and particle size of the products was investigated. Scanning electron...
متن کاملA Facile and Green Synthesis Route for the Production of Silver Nanoparticles in Large Scale
In the present work, a fast, green and simple synthesis method for the production of silver nanoparticles (AgNPs) is introduced. Silver nanoparticles are currently among the most widely used man-made nano materials, present in a wide range of consumer products. Green chemistry is characterized by careful planning of chemical synthesis of silver nanoparticles to reduce adverse outcomes. S...
متن کاملA Facile and Green Biosynthesis of Silver Nanostructures by Aqueous Extract of Suaeda Acuminata after Microwave Assisted Extraction
In the present study, a simple, efficient and fast synthetic strategy was reported for the green biosynthesis of silver nanostructures (i.e. nanoroads and nanoparticles) by the extract of Suaeda Acuminata plant, without any catalyst, template or surfactant. Aqueous extracts were obtained by maceration and microwave assisted extraction (MAE) methods. In MAE procedure, the effec...
متن کاملCobalt oxide nanoparticles by solid-state thermal decomposition: Synthesis and characterization
In this study, mononuclear octahedral cobalt(III) Schiff base complex [CoL3], L = (5-bromo-2-hydroxybenzyl-2-furylmethyl)imine, was synthesized from the reaction of Co(NO3)2•6H2O and the Schiff base ligand L in methanol as solvent. It used as a new precursor to prepare spinel type cobalt oxide nanoparticles by a facile solid-state thermal decomposition. Controlling the temperature and time, Co3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 7 31 شماره
صفحات -
تاریخ انتشار 2015